In 2011, the focus of the work of the ITRS Combination Centre at DGFI was on research regarding a common realization of the ITRS and ICRS. ITRF and ICRF are computed separately and by different institutions today. Hence, the two frames and the respective EOP series are not fully consistent (see Fig. 1).

DGFI realizes for the first time the ITRS and the ICRS consistently in one common adjustment (see Fig. 2). Input data are time series of weekly or session-wise normal equations derived from the observation of VLBI, SLR and GNSS. Table 1 gives an overview of the input data. The parameters, which are included in the solution, are station coordinates, source coordinates and the EOP, i.e. the coordinates of the terrestrial and the celestial pole, UT1-UTC and the time derivatives of these parameters. Altogether, about 45,000 parameters are solved. The geodetic datum of the reference frames is realized according to the IERS Conventions: the origin is realized from SLR observations and the scale as a weighted mean of the SLR and the VLBI scale. The orientation of the CRF is realized by a no-net-rotation condition w.r.t. ICRF2 and the orientation of the TRF by no-net-rotation conditions w.r.t. DTRF2008.
ITRF solutions and the IERS C04 series demonstrate that the terrestrial reference frame and the EOP benefit from a combination of different space geodetic techniques. Thus, also an improvement for the CRF could be expected. Our investigations focused on the effect of the combination of space techniques on the CRF, which has not been investigated so far. Two different impacts on the CRF can be distinguished: (i) the effect of the combination of the terrestrial reference frames (station coordinates) introducing local ties and (ii) the effect caused by the combination of the EOP. While the combination of the station coordinates has only a very small impact (< 40 μas), the combination of the EOP shows a clear effect on the CRF.

Figure 3 shows the differences between the standard deviations of the declination of the sources resulting from a combined and a VLBI-only solution. The standard deviations decrease in general due to the combination. In particular, the standard deviations of the VCS sources (sources observed by so called VLBA Calibra-

Tab. 1: Input data for the consistent computation of TRF and CRF.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Time span</th>
<th>Resolution</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLBI</td>
<td>1984–2007</td>
<td>session-wise (24 h)</td>
<td>Combined: IGG+DGFI</td>
</tr>
<tr>
<td>GNSS</td>
<td>1997–2007</td>
<td>daily</td>
<td>GFZ/TUM</td>
</tr>
<tr>
<td>SLR</td>
<td>1993–2007</td>
<td>weekly</td>
<td>DGFI</td>
</tr>
</tbody>
</table>
Deutsches Geodätisches Forschungsinstitut

3.6.1 Deutsches Geodätisches Forschungsinstitut

tor Survey (VCS) sessions only) become smaller. This could be
expected, because the standard deviations of the VCS source
positions are larger than of the non-VCS sources. The reason
is, that the VCS sources are observed by the VLBA network (a
regional network) only and most of the VCS sources are observed
in only one session.

In Fig. 4 the source positions resulting from the CRF-TRF solu-
tion are compared to the VLBI-only solution. For both, declination
and right ascension, it comes out that the position changes are
larger for VCS sources than for non-VCS sources. In the right
ascension, a systematic effect was found for some of the VCS
sources between +30° and -40° of declination. It can be related to
the combination of LOD (see Fig. 5). However, even if the effect
is systematic, it is not significant w.r.t. the standard deviation of
a single source position (0.4 mas or larger).

Acknowledgements

We thank Peter Steigenberger (FESG, TU Munich) and Thomas
Artz (IGG, University Bonn) for providing the GNSS and VLBI
input data, respectively.

References

Angermann D., Drewes H., Seitz M.: Global terrestrial reference
frame within the GGOS-D project. In: Kenyon, S.; Pacino, M.C.;
Marti, U. (Eds.): Geodesy for Planet Earth, IAG Symposia, Vol. 136, pp 87-93, 2011, DOI: 10.1007/978-3-642-20338-1_11
Bloßfeld M., Müller H., Angermann D.: Adjustment of EOP and
gravity field parameters from SLR observations. Proceedings
of the 17th ILRS Workshop, 2011
Realization of Terrestrial and Celestial Reference Frame. In:
Alef W., Bernhard S. and Nothnagel A. (Eds.) Proceedings of
Fig. 4: Change of sources positions due to the combination.

Fig. 5: Change of right ascension due to different kinds of EOP combination: only terrestrial pole coordinates are combined (red), terrestrial pole coordinates and UT1-UTC parameters are combined (green), all EOP, i.e. coordinates of the terrestrial and the celestial pole and UT1-UTC are combined (blue).
the 20th Meeting of the European VLBI Group for Geodesy and Astronomy, Schriftenreihe des Instituts für Geodäsie und Geoinformation der Universität Bonn, 22, 2011

Manuela Seitz, Detlef Angermann, Mathis Bloßfeld, Michael Gerstl, Robert Heinkelmann, Horst Müller