
CHAPTER 15 GENERAL RELATIVISTIC DYNAMICAL MODEL 

The relativistic treatment of the near-Earth satellite orbit 
determination problem includes correction to the equations of 
motion, the time transformations, and the measurement model. The 
two coordinate Systems generally used when including relativity in 
near-Earth orbit determination Solutions are the solar system 
barycentric frame of reference and the geocentric or Earth-centered 
frame of reference. 

Ashby and Bertotti (1986) constructed a locally inertial frame 
in the neighborhood of the gravitating Earth and demonstrated that 
the gravitational effects of the Sun, Moon, and other planets are 
basically reduced to their tidal forces, with very small 
relativistic corrections. Thus the main relativistic effects on 
a near-Earth satellite are those described by the Schwarzschild 
field of the Earth itself. This result makes the geocentric frame 
more suitable for describing the motion of a near-Earth satellite 
(Ries, et al., 1988). 

The time coordinate in the inertial E-frame is Terrestrial 
Dynamical Time (TDT). This time coordinate is realized in practice 
by International Atomic Time (TAI), whose rate is defined by the 
atomic second in the International System of Units (SI). 

EQUATIONS OF MOTION FOR AN ARTIFICIAL EARTH SATELLITE 

The correction to the acceleration of an artificial Earth 
satellite Aa is 

Aa = - - ^ % \[2(ß + 7)
 S^B - 7V2]? + [2(1 + 7 ) (r-v)v] 

c r r 
(1) 

where 

c = speed of light, 

ß,7 = PPN parameters equal to 1 in General 
Relativity, 

r,v,a = geocentric satellite position, velocity, and 
acceleration, respectively, 

GMe = gravitational parameter of the Earth. 

The value of GM® in the Newtonian two-body acceleration and in Eq, 
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(1) should be the geocentric value but the difference between the 
barycentric and geocentric mass of the Sun, Moon, and planets is 
not important when Computing the indirect Newtonian pertubations. 
The effects of Lense-Thirring precession (frame-dragging) , geodesic 
(de Sitter) precession, and the relativistic effects of the Earth's 
oblateness have been negelcted. 

EOUATIONS OF MOTION IN THE BARYCENTRIC FRAME 

The n-body equations of motion for the solar system frame of 
reference (the isotropic Parameterized Post-Newtonian system with 
TDB as the time coordinate) are required to describe the dynamics 
of the solar system and artificial probes moving about the solar 
system (for example, see Moyer, 1971). These are the equations 
applied to the Moon's motion for LLR (Newhall, Williams, and 
Dickey, 1987) . In addition, relativistic corrections to the laser 
ränge measurement, the data timing, and the Station coordinates are 
required (see Chapter 1 6 ) . 

SCALE EFFECT AND CHOICE OF TIME COORDINATE 

Because the IAU definition of the time coordinate in the 
barycentric frame requires that only periodic differences exist 
between TDB and TDT (Kaplan, 1981), the spatial coordinates in the 
barycentric frame have effectively been rescaled to keep the speed 
of light unchanged between the barycentric and the geocentric 
frames (Misner, 1982; Hellings, 1986). Thus, when barycentric (or 
TDB) units of length are compared to geocentric (or TDT) units of 
length, a scale difference, L, appears. Noting that the mass 
parameter GM/c 2 or Gm/c 2 has units of length, the value for the mass 
parameter of a body in TDB units, GM, is related to its value in 
TDT units, Gm, according to GM = (1-L) Gm. 

It can be shown that the value of the scale difference does 
not include the contribution of the gravitational and rotational 
potential of the Earth (Guinot and Seidelmann, 1988; Huang, et al. , 
1989) so that the value of the scale difference between the two 
frames is L = 1.4808 x 10"8 (Fukushima, et al., 1986). 
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