Status of the ITRF2004

• Current Status:
 • TC latest submissions
 • Internal Consistency of TC solutions

• Preliminary Analysis : Some Results
 • Origin (Geocenter)
 • Scale
 • Earth Orientation Parameters
 • Seasonal variations

• Conclusions

Zuheir Altamimi, Xavier Collilieux, Juliette Legrand
IGN, France

Claude Boucher, CGPC, France

IERS Workshop, Potsdam, October 10-11, 2005
ITRF2004 Derivation

VLBI \[W_1 \quad W_2 \quad \ldots \quad W_n \] \[\rightarrow \] TRF (X, V) + EOP (SINEX)

SLR \[\rightarrow \] TRF (X, V) + EOP (SINEX)

GPS \[\rightarrow \] TRF (X, V) + EOP (SINEX)

DORIS \[\rightarrow \] TRF (X, V) + EOP (SINEX)

Local Ties \[\rightarrow \] Combination ITRF2004

ITRF2004 \[\rightarrow \] TRF (X, V) + EOP (SINEX)
ITRF2004: Input Data
(Status September 2005)

- **Combined set of Time Series per Technique:**
 - VLBI 1984 – 2005 (under analysis)
 - SLR 1993 – 2005 (under analysis)
 - GPS 1996 – 2005 (ready)

- **Individual Solutions**
 - DORIS 1993 – 2005 (IGN-JPL, INASAN, LCA)

- **No multi-technique solutions at obs. level submitted**

- **Co-location tie vectors**
TRF & EOP time series Combination

C\text{AT}REF Software

INPUT: \(X(t), \text{EOP}(t) \) in daily/weekly/monthly SINEX files

OUTPUT: \(X(t_0), \dot{X}, \text{EOP}(t), (T_x, T_y, T_z, D, R_x, R_y, R_z) \)

Datum Definition with Minimum Constraints Over a Reference Set of stations

\[
\begin{align*}
X^i_s &= X^i_{itr} + (t^i_s - t_0)\dot{X}^i_{itr} + T_k + D_kX^i_{itr} + R_kX^i_{itr} \\
&\quad + (t^i_s - t_k)\left[\ddot{T}_k + \dot{D}_kX^i_{itr} + \dot{R}_kX^i_{itr}\right] \\
\dot{X}^i_s &= \dot{X}^i_{itr} + \ddot{T}_k + D_kX^i_{itr} + R_kX^i_{itr}
\end{align*}
\]

\[
\begin{align*}
x^p_s &= x^p + R2_k \\
y^p_s &= y^p + R1_k \\
U_T s &= U_T - \frac{1}{f}R3_k \\
\dot{x}^p_s &= \dot{x}^p + R2_k \\
\dot{y}^p_s &= \dot{y}^p + R1_k \\
LOD_s &= LOD + \frac{\Lambda_0}{f}\dot{R3}_k
\end{align*}
\]

- Matching common EOP parameters at UT noon
- Propagate at UT noon if rates are available

\[
(A^TA)^{-1}A^T(X_{RS} - X_c) = 0
\]
Status of IVS submission

• 3rd version submitted in August:
 – Data span 1984.1 – 2005.3
 – 2024 Sessions/SINEX files
 – 85 are not usable:
 • Mostly files with unsolved parameters
 • Some files with unidentified parameters
 – Preliminary analysis seems OK
IVS WRMS: Internal Precision
IGS – IVS PM Differences

IGS - IVS EOP Diff. (Preliminary Analysis)

XPO diff (mas)

YPO diff (mas)
Status of ILRS submission

- 3rd version submitted in July:
 - Data span 1993.0 – 2005.4
 - 641 Weeks/SINEX files
 - Preliminary analysis unsatisfactory
 - ILRS AWG recommendation is to re-analyse the data (Eastbourne mtg, Oct. 1st) by all ACs and new combination: deadline Oct. 31
ILRS Combined WRMS

Before

After

Outlier rejection
Range & Tropo. Bias

<table>
<thead>
<tr>
<th>AC</th>
<th>Range Bias</th>
<th>Tropospheric Bias</th>
<th>MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>Applied</td>
<td>None</td>
<td>Marini-Murray</td>
</tr>
<tr>
<td>DGFI</td>
<td>pass dependent (sig. only) & (No)</td>
<td>Not estimated</td>
<td>Marini-Murray</td>
</tr>
<tr>
<td>GFZ</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Marini-Murray</td>
</tr>
<tr>
<td>JCET</td>
<td>estimated for some sites</td>
<td>estimated for core sites</td>
<td>New Porto model + P.Ciddor</td>
</tr>
<tr>
<td>NSGF</td>
<td>estimated for some sites</td>
<td>Not estimated</td>
<td>Marini-Murray</td>
</tr>
<tr>
<td>GEOS</td>
<td>Not estimated</td>
<td>Not estimated</td>
<td>Marini-Murray</td>
</tr>
</tbody>
</table>
Status of IGS submission

• 3rd version submitted in August:
 – Data span 1996.1 – 2005.6
 – EOPs start 1999.2
 – 497 weeks/SINEX files
 – Preliminary analysis satisfactory
 • Intercomparison NRCan – DGFI – IGN
 (global consistency at the 1 mm level)
Status of IDS submission

• 3 solutions
 – LCA: 1993.0 – 2005.0 (early submission)
 – INASAN: 1993.0 – 2004.4 (early submission)

• Preliminary analysis of IGN and LCA solutions
DORIS WRMS: IGN & LCA

Comparaison to IGS:
Indicative WRMS

<table>
<thead>
<tr>
<th></th>
<th>2-D</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>LCA</td>
<td>6.6</td>
<td>9.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2-D</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>LCA</td>
<td>2.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
IGS – DORIS PM Differences

Xpole

Ypole

IGN

LCA

Xpole

Ypole
Internal Quality Evaluation: Weekly WRMS

- DORIS/IGN Weekly WRMS
- VLBI/IVS session WRMS
- ILRS Weekly WRMS
- GPS Week
SLR Origin and Scale Variations

[Graphs showing variations over time for different locations and scale (mm)]
DORIS Origin and Scale Variations

IGN

LCA

TX (mm)

TZ (mm)

TY (mm)

Scale (mm)
Seasonal Variations GPS/IGS Sites

BAHR Annual Amplitude and Phase (mm)

DRAO Annual Amplitude and Phase (mm)

IRKT Annual Amplitude and Phase (mm)

BAHR

DRAO

IRKT
GPS Annual Vertical Amplitude & Phase
Polar motion differences with IERS C04

VLBI + SLR + DORIS ... + GPS
Mult-technique Combination over 12 years
Polar Motion Residuals (Zoom ± 1 mas)
Site velocities with $\sigma < 3 \text{ mm/Yr.}$
Site velocities used in kinematic model estimation
Site velocities used in kinematic model estimation - Residuals
Missing Ties

SLR/GPS (2)

VLBI/GPS (4)

DORIS/GPS (1)

VLBI/SLR (1)

Brewster
Haleakala
Ottawa
Kunm
URUM
KUNM
MIZU
SAKAL
Krimea

27x61 to 38x71
83x325
138x446
516x254
513x589
138x578
93x199
230x188
Co-locations
A new difficulty

• Most of IGS/GPS stations experience jumps (discontinuities) in the time series of station positions
• Most of Co-location sites are concerned
• A few station discontinuities are detectable for other techniques
• Having only one tie: to which segment should the tie be applied ???
• Careful combination analysis is needed
A Co-location site with Discontinuities

X

Tie

Time

GPS
SLR
VLBI
DORIS
Preliminary ITRF2004 combination
Tie Residuals

Tie Residuals (mm)

of Tie vectors
Summary & Conclusions

• TCs submissions
 – IGS and IVS: OK
 – ILRS: re-submission (October 31) & discontinuity list to be confirmed
 – IDS: Two solutions to be combined (IGN & LCA)
 • Exclude EOPs from LCA solution
 • Discontinuity list to be confirmed

• ITRF2004 Datum definition:
 – Origin: consistency between ILRS and ITRF2000
 – Scale: ILRS and IVS average consistent with ITRF2000
 – Orientation: Alignment to ITRF2000 at \(t_0 \) (e.g. 00:001)
 – NNRC: tests to be done using:
 • ITRF2000
 • APKIM2004
 • Kreemer et al.
 • Others (?)
ITRF2004 Final

Target: End of November