Generation of GNSS Orbits Based on Microwave and SLR Observations

Claudia Urschl
G. Beutler, W. Gurtner, U. Hugentobler, S. Schaer

Astronomical Institute
University of Bern

October 11, 2005

claudia.urschl@aiub.unibe.ch
Motivation

- GNSS tracking data is regularly collected by both the microwave (IGS/IGLOS) and the SLR observation technique.
- Does it make sense to perform GNSS POD on the basis of the two observation techniques?
Claudia Urschl
Astronomical Institute, University of Bern

October 11

IERS Workshop on Combination

130 GPS-only
27 GNSS
13 SLR

1 GPS: 20,000 MW
1 GLONASS: 3,000 MW
10 SLR (NP)
15 SLR (NP)
Combination strategy (1)

- Combination at level of observations (specifically at level of NEQ information) → MW phase + SLR range
- Computation of common GNSS (GPS + GLONASS) orbit parameters → 41 x 1-day arcs
- Bernese GPS Software (development version)
Combination strategy (2)

Weighting of SLR observations:

- **a** \(\sigma = \infty \)
- **b** \(\sigma = 1 \text{ cm} \)
- **c** \(\sigma = 1 \text{ mm} \)
- **d** \(\sigma = 0.1 \text{ mm} \)
Range residuals (1)

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-5.7</td>
<td>± 0.10 cm</td>
</tr>
<tr>
<td>b</td>
<td>-5.0</td>
<td>± 0.08 cm</td>
</tr>
<tr>
<td>c</td>
<td>-0.6</td>
<td>± 0.05 cm</td>
</tr>
<tr>
<td>d</td>
<td>-0.1</td>
<td>± 0.03 cm</td>
</tr>
</tbody>
</table>

G05
Range residuals (2)

-0.0 ± 0.20 cm
-0.3 ± 0.09 cm
-0.0 ± 0.04 cm
-0.0 ± 0.04 cm
Observed range biases

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Bias (cm)</th>
<th>STD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS G05</td>
<td>-5.7 ± 0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>GPS G06</td>
<td>-5.8 ± 0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>GLONASS R03</td>
<td>-3.1 ± 0.5</td>
<td>5.6</td>
</tr>
<tr>
<td>GLONASS R22</td>
<td>0.0 ± 0.2</td>
<td>5.0</td>
</tr>
<tr>
<td>GLONASS R24</td>
<td>1.1 ± 0.3</td>
<td>6.3</td>
</tr>
</tbody>
</table>
1-day orbit difference at day boundary (1)
1-day orbit difference at day boundary (2)
Conclusions

• From the technical point of view, combined POD analysis of MW and SLR tracking data is no problem.

• Significant biases between the two observation techniques obviously do not allow a rigorous combination for GNSS POD.

• The impact of SLR data on POD is more pronounced for the GLONASS than for the GPS satellite constellation.
Possible explanations for the observed biases

• Mismodelling of GNSS satellite (and receiver) MW antenna phase center offsets and patterns

at present → relative model with unmodelled satellite patterns

new → absolute models, specific to satellite groups or even to each individual satellite (currently under investigation within the IGS!)
Possible explanations for the observed biases

- Mismodelling of GNSS satellite (and receiver) MW antenna phase center offsets and patterns
- Possibly incorrect SLR retro-reflector offsets
- Orbit modeling issues, e.g., solar radiation pressure
Solar radiation pressure modeling

ROCK vs. CODE

G06

radial
along-track
out-of-plane

Orbit differences (cm)

DoY 2004

Claudia Urschel
Astronomical Institute, University of Bern
Solar radiation pressure modeling

ROCK vs. CODE

radial
along-track
out-of-plane

Claudia Urschl
Astronomical Institute, University of Bern
Possible explanations for the observed biases

- Mismodelling of GNSS satellite (and receiver) MW antenna phase center offsets and patterns
- Possibly incorrect SLR retro-reflector offsets
- Orbit modeling issues, e.g., solar radiation pressure
- Issues related to SLR calibration
Issues related to SLR calibration

![Graph showing range residuals over time of day](image)

- Range residuals (cm)
- Time of Day [hours]
Possible explanations for the observed biases

- Mismodelling of GNSS satellite (and receiver) MW antenna phase center offsets and patterns
- Possibly incorrect SLR retro-reflector offsets
- Orbit modeling issues, e.g., solar radiation pressure
- Issues related to SLR calibration
- Unmodelled effects (?)