Contribution of the S1 thermal tide to Earth rotation: comparison of geophysical models and geodetic observations

Aleksander Brzeziński

Space Research Centre, Polish Academy of Sciences
Bartycka 18A, 00-716 Warsaw, Poland
alek@cbk.waw.pl

Presented at
IERS Workshop on Conventions
Paris, 20–21 September 2007
Theme 1: Recent advances and validations of the IERS Conventions models

This paper is based on the presentation given at the IUGG General Assembly 2007 in Perugia. The research was supported by the Polish national science foundation 2007-2009 under grant No. N526 037 32/3972.
Observations of Earth rotation contain contribution of the thermal tide S_1 with a period of 24 hours

- small size – amplitude up to 150 μas corresponding to only 5 mm at the Earth’s surface, nevertheless already well detectable

- important for modeling global dynamics of the solid Earth and its external fluid layers, the atmosphere and oceans

Objectives of this presentation

- to give a general description of the S_1 tide and overview of the observation and modeling efforts

- to estimate from the available atmospheric and oceanic excitation data the influence of S_1 on Earth rotation and compare to the determinations from space-geodetic observations
General description

S_1 thermal (radiational) tide

- Sun-fixed global perturbation, period 24 hours
- Origin: diurnal cycle in the solar heating
- Manifested by diurnal variation of the atmospheric angular momentum (AAM)
- Similar effect in the nontidal ocean angular momentum (OAM) due to the ocean response to the atmospheric forcing
- Strong annual and semiannual modulations of S_1 signal giving rise to the side lobes shifted in frequency by ± 1 cpy (P_1, K_1) and by ± 2 cpy (π_1, Ψ_1)
- Gravitational ocean tide signal at the S_1 frequency is several times smaller than the thermal effect (but it is not the case of the side lobes)

For further details concerning the S_1 tide see the paper by Ray and Egbert (2004, *J. Phys. Oceanogr.*, Vol. 34, pp. 1922–1935) and the references therein.
General description

S_1 signals in AAM and OAM contribute at measurable level to all components of Earth rotation

- **nutation**
 - contribution to prograde annual term, with amplitude between 100 and 150 microarcseconds (µas)

- **polar motion**
 - prograde harmonic with period of 24 hours and amplitude up to 40 µas

- **UT1**
 - 24-hours harmonic with amplitude up to 2.5 µs corresponding to 40 µas

⇒ Only the S_1 contribution to nutation is included in the conventional models as the so-called “Sun-synchronous” empirical correction to the amplitude of the prograde annual nutation in the IAU 2000 precession-nutation model.
Space-geodetic determinations of S1

Estimation from the space-geodetic observations of Earth rotation

• contribution to nutation only from VLBI
• contributions to prograde polar motion and UT1 from both VLBI and GPS observations
• difficulties
 – relatively small signal
 – estimation can be corrupted by different Sun-synchronous errors, e.g. those due to the thermal deformation of the VLBI antennas

We consider the following estimates

• VLBI1 – (Bolotin and Brzeziński, 2006), input data span 1984–2005
• VLBI2 – (Gipson, 1996), input data span 1979–1994
• GPS – (Rothacher et al., 2001), data span 1995–1998.1
Geophysical excitation data: AAM

Estimation from high-resolution atmospheric and oceanic excitation data

⇒ needs sampling interval shorter than 12 hours

We used the following time series of the AAM with subdiurnal resolution to estimate parameters of the S1 harmonic and its influence on Earth rotation

- **AAM1, AAMIB1** – NCEP-NCAR reanalysis data (Salstein and Rosen, 1997)
 period: 1948–2006; sampling interval: 6 hours

- **AAM2** – ERA-40 reanalysis model (Uppala et al., 2005)
 period: 1948–2004; sampling interval: 6 hours

- **AAM2′** – ECMWF operational data available from the IERS SBA
 period: 1993.0–1996.5; sampling interval: 6 hours with gaps

- **AAM3, AAMIB3** – JMA operational data available from the IERS SBA
 period: 1993.3–2000.5; sampling interval: 6 hours with gaps
Geophysical excitation data: OAM

We used the following OAM models to estimate parameters of the S1 harmonic and its influence on Earth rotation

- **OAM1** – hydrodynamic model of the S1 component (Ray and Egbert, 2004)
- **OAM2** – barotropic model (Ponte and Ali, 2002) forced by wind and atmospheric pressure fields from the NCEP-NCAR reanalysis model period: 1993.0–2000.5; sampling interval: 1 hour
- **OAM3** – ocean model for circulation and tides (OMCT) (Thomas et al., 2001) forced by wind and pressure fields from the model ERA-40 period: 1963–2001; sampling interval: 30 minutes

We estimated the total excitation of Earth rotation by the dynamically coupled system atmosphere-ocean by considering the following 3 consistent combinations

- **model1** (barotropic) – AAMIB1+OAM2+OTAM
- **model2** (hydrodynamic) – AAM2+OAM1+OTAM
- **model3** (OMCT) – AAM2+OAM3+OTAM
Geophysical excitation data

Parameters of the S_1 thermal tide and its contribution to Earth rotation can change from year to year.

• In order to minimize the influence of this variability on comparisons, we reduced all geophysical series (AAM, OAM) to the common time interval 1993.0–2000.5. The only exception is the operational ECMWF AAM series which is only 3.5 years-long.

• One should bear in mind that the remaining part of the S_1 signal of stochastic character is still important and needs regular monitoring.
Atmospheric and oceanic contributions to prograde annual nutation: model MHB 2000 (left) vs. modeled geophysical contributions, atmospheric (middle) and oceanic (right)
Results: S1 contribution to nutation

Combined atmospheric and oceanic contribution to prograde annual nutation: comparison of VLBI estimate and 3 geophysical models
Atmospheric and oceanic contributions to prograde diurnal polar motion, S1 term: space-geodetic observations (left) vs. modeled geophysical contributions, atmospheric (middle) and oceanic (right)
Results: S1 contribution to prograde diurnal polar motion

Combined atmospheric and oceanic contribution to prograde diurnal polar motion, S1 term: comparison of VLBI estimate and 3 geophysical models
Atmospheric and oceanic contributions to diurnal variation of UT1, S1 term: space-geodetic observations (left) vs. modeled geophysical contributions, atmospheric (middle) and oceanic (right)
Results: S1 contribution to UT1

Combined atmospheric and oceanic contribution to diurnal variation of UT1, S1 term: comparison of VLBI estimate and 3 geophysical models
Summary and conclusions

S1 contribution to nutation

- there is a rough agreement between the estimated contributions of AAM but surprisingly, the OMCT and barotropic OAM yield almost opposite results
- the best agreement with observations is found for the hydrodynamic OAM combined with ERA-40 AAM

S1 contribution to prograde polar motion

- the OAM results are coherent while there are large differences between the estimated contributions of AAM
- the best agreement with observations is found for the barotropic OAM combined with the NCEP-NCAR reanalysis AAM

S1 contribution to UT1

- good agreement between the estimated contributions of AAM and OAM
- the contributions of AAM and OAM tend to cancel each other and the total effect does not agree with the observation