Precision Surveys at Australian Geodetic Observatories

Geoscience Earth Monitoring
Gary Johnston, John Dawson, Paul Digney, Bob Twilley

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Overview

• Geodetic Observatories
• Planning and Strategies
• Equipment and Equipment calibration
• Monumentation and local control networks
• Reference point on space geodesy instruments
• Preliminary computations
• Limitations and developments
IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Australian geodetic co-location

<table>
<thead>
<tr>
<th>Site</th>
<th>GPS</th>
<th>SLR</th>
<th>GLONASS</th>
<th>VLBI</th>
<th>DORIS</th>
<th>Absolute Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Stromlo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tidbinbilla</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Hobart</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Yarragadee</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Darwin</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Other geodetic co-location

- GPS and tide gauge
 - Australia
 - Hillarys, Bernie
 - Antarctica
 - Mawson, Casey, Davis
 - South Pacific
 - Samoa, Cook Islands, Fiji, Tuvalu, Tonga, Manus Island, PNG, Kiribati, Vanuatu, Marshall Islands, Nauru, Micronesia
 - Palau, Niue, Solomon Islands
South Pacific Sea Level Monitoring
GPS to Tide Gauge Benchmark Connection

• Multi-day GPS connection between ARGN site and TGBM
• Orthometric Levelling connection as well using Total Station Levelling (TSL)
• Connections typically completed biennially
Planning and Strategies

- Survey timing best when weather conditions are neutral ie. Optimum for survey observations
- Allow for several days down time on SLR or VLBI system
- Plan to avoid critical tracking campaigns
- Plan placement of marks on telescope to optimise design and computation approach (e.g. circle radii and arc length)
- Place instrument stand points so near orthogonal lines are observed into telescope
Yarragadee (SLR)
Mount Stromlo (SLR)
Mount Stromlo (SLR) - after fire
Mount Stromlo (SLR) - today

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Hobart (VLBI)

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Tidbinbilla (VLBI)
Equipment

Leica TCA2003

Specification

• Angular 1” H & V
• distance 1mm + 1ppm

Factory Calibration

• Angular 0.6” H & V
• distance 0.5mm + 0.4ppm
Equipment

- Leica Precision prisms with Tribrach and carriers (including plate bubble)

- Zenith Nadir Plummet for centring tripods where required
Equipment

- Fixed height prism pole (pogo) for Total Station Levelling (TSL)
- Invar Staff for instrument heighting
Equipment
Equipment
Equipment Calibration

• Total Station
 – Factory calibration initially (when purchased)
 – Annual comparison with standard baseline (linked to national standard)
 – Internal angular calibrations at time of survey
 – Comparison with GPS
 – Calibration of prism / reflectors over a known baseline length
Equipment Calibration

• Invar Staff
 – Factory calibration initially (when purchased)
 – Biennial calibration
Monumentation

- Survey network linking instrumentation should be an over determined braced quadrilateral.
- Ideally instrument standpoints are stable bedrock anchored pillars.
- Pillars should have reference marks to monitor local deformation.
- Survey marks should have an unambiguous reference point.
Yarragadee Control Network

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
GPS/DORIS reference points

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Reference Points

$q(q_n, q_e, q_u)$

secondary (moving) axis

$p(p_n, p_e, p_u)$

primary (fixed) axis

$\tilde{p} - \tilde{q}$
IVP Determination

- Survey targets placed on the telescope and observed through a rotational series
- Arcs scribed by target are centered around the axis of rotation
Principal

Axis of rotation

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Limitations

• Measurement of instrument trunion axis height
• Transfer of ellipsoidal height (geoid model error)
• Impact of tape reflectors on distance and angular measurement
• Unknown effect of refraction on lines which have a temperature gradient
Instrument Heighting

\[H = \frac{S_2 \cot Z_1 - S_1 \cot Z_2}{\cot Z_1 - \cot Z_2} - (H_1 - H_2) \]

Where:
- \(S_n \) are staff readings
- \(Z_n \) are zenith angles

IERS Workshop on site co-location, Matera, Italy, Session 2 “Site Surveys”
Developments

• Use of Total Station Levelling (TSL) to reduce refraction and staff calibration issues
• Motorization and Automatic Target Recognition (ATR) in Total Stations reducing observer errors
• Possible use of laser scanning or terrestrial photogrammetry to determine VLBI antenna deformation