Surveying the GPS – VLBI eccentricity at Medicina: methodological aspects and practicalities

Vittuari L. 1, Sarti P. 2, Tomasi P. 2, Sillard P. 3,4, Negusini M. 2

1 DISTART Dept. (Geodesy and Topography) – Engineering Faculty – University of Bologna, Italy
2 Istituto di Radioastronomia - CNR - c/o CGS-ASI Matera, Italy
3 Institut National de la Statistique et des Etudes Economiques – Paris, France
4 Institute Géographique National – France
Goals

• Monitor the stability of ground control network
• Test a rigorous methodology for local ties based on terrestrial local survey
• Focus on VLBI reference point (geometrical and implicit definition)
• Full covariance matrix and SINEX production
• **Instrumentation:**
 – TDA5005 (0.15 mgon; 1 mm + 2 ppm) with ATR
 – TCA2003 (0.15 mgon; 1 mm + 1 ppm) with ATR (survey 2000)
 – TC2003 (0.15 mgon; 1 mm + 1 ppm)
 – All provided by a biaxial compensator

• **Surveying approach:**
 – Three strata (position I-II) with distances and angles

• **Set-up of all tribrachs:** using biaxial compensator of total stations

• **Equal height between tribrach-prisms centre and tribrach-total station reference point**

• **One three-dimensional benchmark was fixed as origin of elevations and instrumental heights were direct measured on auto-centring devices**

• **10 retro-reflecting prisms were installed on the VLBI antenna, with prism constants equal to EDM internal calibration path (approximate zero constant)**
Instrumental heights measurement
Reflector types for measurement of distances

- Reflective tape

 \[1 \sigma_{EDM} = 1-2 \text{ mm} \quad (d < 120 \text{ m}) \]

- Prism reflector

 \[1 \sigma_{EDM} = 0.5-1 \text{ mm} \quad (d < 120 \text{ m}) \]

- Corner cube reflector

 \[1 \sigma_{EDM} = 0.5-1 \text{ mm} \quad (d < 120 \text{ m}) \]

- 360° prism reflector

 \[1 \sigma_{EDM} = 2 \text{ mm} \quad (d < 120 \text{ m}) \]
Targets for angular measurements

Manual target collimation

Aut. Target Recognition

- Reflectometer within field of view?
- Spiral search
 - Measure HzVD
Angles and distances: reciprocal weights

The European Synchrotron Radiation Facility (ESRF)

EDM_{ESRF} = D_1 + D_2 - D_{EDM}

Calibration Results (Mean = -0.09 mm; Standard Deviation = 0.14 mm) and Best Model

standard deviation from 0.18 mm to 0.10
Classical network processing

- Using STAR*NET (Starplus software Inc.) least square adjustment software
- Planimetric origin on pillar P3
- Height reference on 3D benchmark G7
- Fixed bearing from P3 to pillar P1
Total ground control network 2002
\[c^j : \begin{cases} P^j : a^j x_i^j + b^j y_i^j + c^j z_i^j + d^j = 0 \\ S^j : \left(x_i^j \right)^2 + \left(y_i^j \right)^2 + \left(z_i^j \right)^2 - 2 \cdot \left(\alpha^j x_i^j + \beta^j y_i^j + \gamma^j z_i^j \right) + o^j = 0 \end{cases} \]
Tilted azimuth (fixed) axis

Elevation axis

Tilt direction

Plane containing the tilted elevation (moving) axis
GPS antenna survey approach

Horizontal angles

Vertical angles

90° 90°

90° 90°

* = Points of view

Symmetry axis fictitious points
VLBI reference point estimated with terrestrial measurements

<table>
<thead>
<tr>
<th>Survey Year</th>
<th>ITRF2000 (epoch 10/09/02)</th>
<th>Local frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>4461369.876 ± 0.001</td>
<td>919596.931 ± 0.001</td>
</tr>
<tr>
<td>2002</td>
<td>4461369.8769 ± 0.0004</td>
<td>919596.9313 ± 0.0010</td>
</tr>
</tbody>
</table>
The DOMES are correct
Variance factor equal to 1.00

+SITE/ID
*CODE PT__DOMES__ T__STATION_DESCRIPTION__ APPROX_LON__ APPROX_LAT__ APP_H__
VLBR A 12711S001
GPSR A 12711M003

+SOLUTION/ESTIMATE
*INDEX TYPE__ CODE PT SOLN__ REF_EPOCH__ UNIT S __ESTIMATED_VALUE__ ___STD_DEV___
1 STAX VLBR A 1 0:000:00000 m 2 4.461369979510414E+06 3.53172E-004
2 STAY VLBR A 1 0:000:00000 m 2 9.19596254768435E+05 7.98877E-004
3 STAZ VLBR A 1 0:000:00000 m 2 4.449559199128945E+06 3.98169E-004
4 STAX GPSR A 1 0:000:00000 m 2 4.461400894389587E+06 1.21589E-003
5 STAY GPSR A 1 0:000:00000 m 2 9.195934232231564E+05 8.45007E-004
6 STAZ GPSR A 1 0:000:00000 m 2 4.449504682171055E+06 8.48266E-004

+SOLUTION/MATRIX_ESTIMATE L COVA
*PARA1 PARA2 __PARA2+0__________ __PARA2+1__________ __PARA2+2__________
1 1 1.247302516102714E-07
2 1 1.070616748207442E-09 6.382049648848917E-07
3 1 -3.45893878519546E-08 1.28617721140089E-07 1.58536126962561E-07
4 1 1.450773449662466E-08 6.619023700247679E-08 8.041846065194363E-09
4 4 1.478387343400914E-06
5 1 8.872940924006697E-09 2.818508001119155E-07 6.581914984641E-08
5 4 3.293477064931050E-09 7.140361834719233E-07
6 1 -3.79540049408266E-08 6.583918267119025E-08 3.962229159026654E-08
6 4 -4.50003259709083E-08 1.296042716134309E-09 7.19559638398684E-07

+SOLUTION/MATRIX_ESTIMATE L COVA

%ENDSNX
The DOMES are correct
Variance factor equal to 1.00

<table>
<thead>
<tr>
<th>CODE</th>
<th>PT</th>
<th>DOMES</th>
<th>T</th>
<th>STATION DESCRIPTION_</th>
<th>APPROX_LON_</th>
<th>APPROX_LAT_</th>
<th>APP_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLBR</td>
<td>A</td>
<td>12711S001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPSR</td>
<td>A</td>
<td>12711M003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE__</th>
<th>CODE</th>
<th>PT</th>
<th>SOLN</th>
<th>REF_EPOCH__</th>
<th>UNIT</th>
<th>S</th>
<th>ESTIMATED VALUE__</th>
<th>STD_DEV_</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STAX</td>
<td>VLBR</td>
<td>A</td>
<td>1</td>
<td>0:000:00000 m</td>
<td>2</td>
<td>4.461369978747157E+06</td>
<td>2.67134E-004</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>STAY</td>
<td>VLBR</td>
<td>A</td>
<td>1</td>
<td>0:000:00000 m</td>
<td>2</td>
<td>9.195968255608416E+05</td>
<td>5.44588E-004</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STAZ</td>
<td>VLBR</td>
<td>A</td>
<td>1</td>
<td>0:000:00000 m</td>
<td>2</td>
<td>4.449559200474912E+06</td>
<td>2.80537E-004</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>STAX</td>
<td>GPSR</td>
<td>A</td>
<td>1</td>
<td>0:000:00000 m</td>
<td>2</td>
<td>4.461400895152843E+06</td>
<td>6.81391E-004</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>STAY</td>
<td>GPSR</td>
<td>A</td>
<td>1</td>
<td>0:000:00000 m</td>
<td>2</td>
<td>9.195934231391583E+05</td>
<td>5.43265E-004</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>STAZ</td>
<td>GPSR</td>
<td>A</td>
<td>1</td>
<td>0:000:00000 m</td>
<td>2</td>
<td>4.449504680825088E+06</td>
<td>7.14008E-004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARA1</th>
<th>PARA2</th>
<th>PARA2+0</th>
<th>PARA2+1</th>
<th>PARA2+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.136055600058919E-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.715051926328614E-09</td>
<td>2.965758690842930E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.95794692585922E-08</td>
<td>6.082195561979286E-08</td>
<td>7.870072882320828E-08</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.258598565862185E-08</td>
<td>2.544143821923472E-09</td>
<td>-1.30651184228835E-08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.642941241946729E-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.092006786654302E-09</td>
<td>1.113665739364520E-08</td>
<td>2.422511344148857E-08</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-5.22352882429244E-08</td>
<td>2.951370324747009E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.50134215451420E-08</td>
<td>2.450421396973857E-08</td>
<td>2.347633522844270E-08</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.762122210433892E-07</td>
<td>-6.11625873270111E-08</td>
<td>5.098075311688250E-07</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Two high precision total stations are advisable: in order to reduce time of antenna inactivity, and to supply a calibration check of EDM on common distances.

• In our survey scheme, distances between points have to be contained in 100-120 m in order to maintain accurate, angular collimation at prisms centre, and distance measurements.

• Constants of reflectors have to be evaluated before in laboratory, and high accuracy accessories are required.

• Local survey has met high precision requirements.

• Full covariance and SINEX were produced.